Nonparametric Inferences for Additive Models
نویسندگان
چکیده
Additive models with backfitting algorithms are popular multivariate nonparametric fitting techniques. However, the inferences of the models have not been very well developed, due partially to the complexity of the backfitting estimators. There are few tools available to answer some important and frequently asked questions, such as whether a specific additive component is significant or admits a certain parametric form. In an attempt to address these issues, we extend the generalized likelihood ratio (GLR) tests to additive models, using the backfitting estimator. We demonstrate that under the null models, the newly proposed GLR statistics follow asymptotically rescaled chi-squared distributions, with the scaling constants and the degrees of freedom independent of the nuisance parameters. This demonstrates that the Wilks phenomenon continues to hold under a variety of smoothing techniques and more relaxed models with unspecified error distributions. We further prove that the GLR tests are asymptotically optimal in terms of rates of convergence for nonparametric hypothesis testing. In addition, for testing a parametric additive model, we propose a bias corrected method to improve the performance of the GLR. The bias-corrected test is shown to share the Wilks type of property. Simulations are conducted to demonstrate the Wilks phenomenon and the power of the proposed tests. A real example is used to illustrate the performance of the testing approach.
منابع مشابه
Nonparametric Estimation of a Generalized Additive Model with an Unknown Link Function
This paper is concerned with estimating the mean of a random variable Y conditional on a vector of covariates X under weak assumptions about the form of the conditional mean function. Fully nonparametric estimation is usually unattractive when X is multidimensional because estimation precision decreases rapidly as the dimension of X increases. This problem can be overcome by using dimension red...
متن کاملInference in generalized additive mixed models by using smoothing splines
Generalized additive mixed models are proposed for overdispersed and correlated data, which arise frequently in studies involving clustered, hierarchical and spatial designs. This class of models allows ̄exible functional dependence of an outcome variable on covariates by using nonparametric regression, while accounting for correlation between observations by using random effects. We estimate no...
متن کاملEmpirical Likelihood for Nonparametric Additive Models
Nonparametric additive modeling is a fundamental tool for statistical data analysis which allows flexible functional forms for conditional mean or quantile functions but avoids the curse of dimensionality for fully nonparametric methods induced by high-dimensional covariates. This paper proposes empirical likelihood-based inference methods for unknown functions in three types of nonparametric a...
متن کاملEmpirical likelihood inferences for the semiparametric additive isotonic regression
AMS subject classifications: 62G15 62G08 62F30 a b s t r a c t We consider the (profile) empirical likelihood inferences for the regression parameter (and its any sub-component) in the semiparametric additive isotonic regression model where each additive nonparametric component is assumed to be a monotone function. In theory, we show that the empirical log-likelihood ratio for the regression pa...
متن کاملHypothesis testing in semiparametric additive mixed models.
We consider testing whether the nonparametric function in a semiparametric additive mixed model is a simple fixed degree polynomial, for example, a simple linear function. This test provides a goodness-of-fit test for checking parametric models against nonparametric models. It is based on the mixed-model representation of the smoothing spline estimator of the nonparametric function and the vari...
متن کامل